全网整合营销服务商

电脑端+手机端+微信端=数据同步管理

免费咨询热线:0769-9317759

足球联赛关键球员数据统计(足球联赛核心球员数据分析)

Proposing calculation template

like

I’m thinking we could suggest a Python/pandas template for calculating key player metrics like contributions per 90 minutes, usage rates, and ranking. We could offer to process a CSV file if the user has one, as they might want to compute from their league dataset. I should ask about their data files, specifically their league, season, metrics needed, output format, and how often they want updates. It’d be good to propose what columns are necessary for the analysis, like player stats and various metrics.Proposing calculation formulas

I’m considering providing calculation formulas for metrics per 90 minutes, like goal contributions, non-penalty stats, usage rates, and team contribution percentages. We could offer a user-friendly Python notebook or script that takes FBref CSV exports and computes summaries. Including a code snippet would be helpful since the user might not have explicitly requested it. While we could suggest fetching data if they provide a league and season, it’s important to encourage them to use CSV exports or public APIs instead. It’s safer than scraping content directly from FBref.Proposing analysis routes

defen

I’m thinking of proposing two approaches to the user. First, if they have raw match or player event data in CSV or JSON, I can compute rankings based on that. Second, if they want me to fetch public data, I can script a download from sources like FBref or Understat, but I will need their permission and league-season details. I also want to clarify what "关键球员" means—is it referring to a threshold?

Then, I can suggest metrics weighted by position for various player roles, including specific stats for attackers, midfielders, defenders, and goalkeepers. We might also recommend a minimum threshold of 900 minutes played and propose outputting the top 20 players per metric, along with an "impact index."Preparing implementation request

I want to create a clear request along with a minimal code skeleton for computing data from FBref exports. The code should read various CSVs: 'standard', 'shooting', 'passing', 'defense', 'possession', and 'gk', merging data on player-team and computing metrics per 90 minutes while restricting minutes to be greater than or equal to 900. I should also calculate a composite impact by position.

I'll include concise comments in the code and format it properly. While I can hold off on saving files until necessary, I want to ask for clarification and share plan options. It’s essential to gather more details from the user first.

想做哪种“关键球员”统计?先确认几个点,我就能直接开干并给你可复用的脚本/表格输出。

需要的信息

  • 联赛与赛季:比如 英超 2023-24,还是你自己的联赛数据
  • 数据来源:你手头是否有 CSV/Excel?还是需要我从公开站点抓取(FBref/Understat/football-data.org)
  • 统计口径:按全季累计还是按每90分钟;是否排除点球(npxG、非点球进球);分钟下限(常用≥900)
  • 位置/角色:是否分前锋/中场/后卫/门将榜单,还是做一个综合“影响力指数”
  • 输出形式:CSV、排行榜表、Markdown报告、可视化图(条形/雷达)、或一键 Python 脚本/Notebook
  • 更新频率:一次性报告还是可重复跑的工具

可做的统计(示例)

  • 通用:进球、助攻、进+助/90、npxG/90、xA/90、npxG+xA/90、射门/90、关键传球/90、SCA/90、GCA/90
  • 推进:推进传球/90、带球推进/90、进入禁区传球/90、触球三区分布、失误
  • 防守:抢断+拦截/90、对抗成功%、施压/90、解围、封堵
  • 门将:PSxG-GA、扑救率、出击/高空球成功%、传球长度与成功率
  • 团队占比:个人贡献占球队进球/射门/SCA占比
  • 综合指数:按位置加权(例如前锋侧重 npxG/90、xA/90、SCA/90;中场侧重推进与创造;后卫侧重防守+推进;门将侧重 PSxG-GA)

两种推进方式

optio

  1. 你有数据文件
  • 直接发列名示例或放到项目里(CSV/Excel),我写一个 analysis.py 读入、清洗、计算每90与排行榜,输出 results/ 多个榜单与总表。
  1. 我来抓取公开数据
  • 说明联赛与赛季;我用 FBref 导出/Understat 数据做汇总(含 npxG/xA 等),生成同样的输出。需要你允许网络访问,并接受公开数据来源的口径差异。

如果你想先看个最小可用的脚本模板(基于你已有一张球员赛季汇总表),我可以马上贴一个 60 行左右的 pandas 脚本,计算每90与 Top N 榜单。你更倾向哪种?请给我:

看个最小可

  • 联赛与赛季
  • 数据来源(本地/我来抓)
  • 希望的核心指标与阈值(是否≥900分钟、是否排除点球)
  • 期望输出格式(CSV/Markdown/图表/脚本)

您的项目需求

*请认真填写需求信息,我们会在24小时内与您取得联系。